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Papillomaviruses are small nonenveloped viruses with 55-
nm-diameter icosahedral capsids that contain double-stranded
DNA genomes of approximately 8,000 bp. They are widely
distributed throughout the animal kingdom, specifically infect
squamous epithelia, and cause the generation of warts. An
infectious etiology of warts was long suspected and eventually
proven in the 19th century. One of the first recorded experi-
mental wart transmission cases in humans appears to have
been accidental and was reported in 1845 by a certain Chan-
dler, who “when removing a large acicular condyloma with his
instrument injured his assistance beneath the thumbnail. On
the injured place there appeared after a short time a wart,
which was repeatedly destroyed, but reappeared, until the nail
of the injured thumb was removed” (cited in reference 134).
Ullmann also noted a similar accidental transmission of laryn-
geal papillomas and performed self-inoculation experiments
with laryngeal papilloma extracts applied to scarified sites on
his forearm, and these experiments yielded warts after a
lengthy latency period of 9 months (134). Similar inoculation
experiments had also been performed with extracts derived
from common hand warts (23), and serial inoculation experi-
ments with human subjects were performed (78).

Genital warts and cervical cancer were long regarded as
manifestations of then-common venereal diseases such as
syphilis and gonorrhea (75). This theory was contested in a
rather ghastly paper published in 1917. Extracts of a penile
condyloma that was harvested from a young medical student
who did not exhibit other overt symptoms of venereal diseases
were used to inoculate sites on the forearms of the author and
his assistant as well as the genital mucosa of a “virgo intacta.”
After a period of 2.5 months, the unfortunate female subject
developed genital condyloma, and flat warts appeared on the
forearms of two male probands (139). These and other exper-
iments led to the realization that genital warts represent dis-
tinct disease entities that are caused by a transmissible agent.

The concept that some warts have an inherent propensity for
malignant progression was established from studies by Shope,
Rous, and others who studied experimental transmission of
warts that occur naturally in cottontail rabbits. These investi-
gators discovered that lesions that formed in domestic rabbits
after inoculation with cottontail rabbit wart extracts were par-

ticularly susceptible to malignant progression (116). Careful
transmission studies demonstrated that such extracts caused
the emergence of warts only in rabbits and not in other ani-
mals, thus illustrating the exquisite species specificity of pap-
illomaviruses (117).

Harald zur Hausen’s laboratory was the first to demonstrate
that genital warts contain human papillomavirus (HPV) ge-
nomes (28, 53). Subsequent low-stringency hybridization ex-
periments with HPV sequences isolated from genital warts
performed in his laboratory led to the discovery of related
HPV sequences in cervical cancer tissues (38).

HPV AND HUMAN DISEASE

Approximately 200 different HPVs have now been charac-
terized, and new types are regularly added to this list. These
viruses can be classified into mucosal and cutaneous HPVs.
Within each of these HPV groups, individual viruses are des-
ignated high risk or low risk according to the propensity for
malignant progression of the lesions that they cause. Most
HPVs are low risk and produce localized benign warts that do
not undergo malignant progression even if left untreated.
Among the cutaneous HPV types, HPV-5 and HPV-8 may be
classified as high risk, as they are associated with the develop-
ment of epidermodysplasia verruciformis (EV), an exceedingly
rare skin condition that provided one of the earliest indications
that HPVs may contribute to human tumorigenesis (67, 104,
110). EV patients present with flat wart-like cutaneous lesions
in early childhood and frequently develop skin cancers later in
life, particularly in sun-exposed epithelial sites. There is a clear
genetic component to this disease, and the increased incidence
of EV-associated cancers in immune-suppressed patients sug-
gests that malignant progression is related to a defect in im-
mune surveillance (3, 112). HPV-5- and HPV-8-related HPVs
have been detected in a large percentage of nonmelanoma skin
cancers, particularly those that develop in immune-suppressed
patients. It has been suggested that these viruses may also
contribute to psoriasis and skin tumors in immune-competent
individuals. There have been few molecular studies with EV-
type HPVs that yield insights regarding the molecular path-
ways by which these viruses may contribute to skin carcinogen-
esis (reviewed in references 89 and 109).

Low-risk mucosal HPVs such as HPV-6 and HPV-11 cause
genital warts (condyloma accuminata), whereas the high-risk
HPVs cause squamous intraepithelial lesions that can progress
to invasive squamous cell carcinoma. The vast majority of
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human cervical cancers are associated with high-risk HPV in-
fections. HPV-16 is by far the most prevalent mucosal high-risk
HPV type, followed by HPV-18, HPV-31, and others (reviewed
in reference 150). Approximately 20% of oral cancers, partic-
ularly oropharyngeal carcinomas in patients that lack the clas-
sical risk factors of tobacco and alcohol abuse, are also high-
risk HPV positive (52). Other anogenital tract malignancies
that are also frequently associated with high-risk HPV infec-
tions include penile and vulvovaginal cancers (reviewed in ref-
erence 26) as well as anal carcinomas, which frequently occur
in individuals with human immunodeficiency virus-associated
AIDS (reviewed in 82).

Within the family of mucosal HPVs, the low-risk/high-risk
classification parallels the transforming potential of the respec-
tive viral genomes in cell culture and transgenic mouse models.
Hence, much of the molecular research has focused on the
analysis of the transforming activities of mucosal high-risk
HPVs that are associated with cervical cancer. This review
summarizes these insights.

GENOMIC ORGANIZATION AND LIFE CYCLE

Only one of the two strands of the circular papillomavirus
DNA genome is actively transcribed. The genome can be di-
vided into three major portions: a �4-kb early (E) region that
encodes nonstructural proteins, a �3-kb late (L) region that
encodes the two capsid proteins, and a �1-kb noncoding long
control region (LCR) that contains a variety of cis elements,
which regulate viral replication and gene expression. E and L
genes are numbered according to size; the higher the number,
the smaller the corresponding open reading frame (Fig. 1A).

The papillomavirus life cycle is tightly linked to the differ-
entiation program of the infected epithelium. Papillomaviruses
initially infect basal epithelial cells, which constitute the only
cell layer in an epithelium that is actively dividing. The nature
of the HPV receptor(s) remains unclear, although integrin
�4�6 has been implicated (45). Similarly, the processes that
mediate virus uptake, decapsidation, and nuclear import of the

viral genome remain largely unknown. The viral DNA is main-
tained at a low copy number in the nuclei of infected host cells
as they undergo differentiation and move toward the surface of
the epithelium. In terminally differentiated cells, the virus rep-
licates to a high copy number, late genes are expressed, and
progeny virus is produced (reviewed in reference 123). HPVs
are nonlytic viruses, and progeny virus is shed into the envi-
ronment as a cargo within epithelial squamae. The HPV E4
protein associates with keratin intermediate filaments, which
affects the mechanical stability of the keratin network and may
facilitate the release of viral particles (30).

The papillomavirus E1 and E2 proteins each play important
roles in viral genome replication. E2 is a DNA binding tran-
scription factor that interacts with ACCN6GGT motifs in the
viral LCR (reviewed in reference 90). High-risk HPV E2 pro-
teins have the capacity to act as transcriptional activators
(111), but they function as transcriptional repressors of viral
gene expression in keratinocytes (11, 27). In addition to mod-
ulating viral gene expression, HPV E2 proteins associate with
the viral DNA helicase E1. This interaction is necessary for
efficient origin recognition and viral genome replication (21,
22). Papillomavirus E2 proteins also play important roles in
viral genome segregation during cell division by tethering viral
genomes to mitotic chromosomes (121). The association of E2
with mitotic chromosomes is mediated by interaction with the
human bromodomain protein Brd4 (144).

Since HPVs do not encode other enzymes that are rate
limiting for DNA replication, production of viral genomes is
critically dependent on the host cellular DNA synthesis ma-
chinery. Papillomaviruses are replicated in differentiated squa-
mous epithelial cells that are growth arrested and thus intrin-
sically incompetent to support genome synthesis. Hence, HPVs
encode functions that create and/or maintain a replication-
competent cellular milieu in infected differentiated keratino-
cytes. An additional important aspect of the papillomavirus life
cycle is the establishment of long-term viral persistence in
squamous epithelia, where cells constantly undergo differenti-
ation and differentiated cells are shed. The specific strategies

FIG. 1. (A) Schematic representation of the HPV-16 double-stranded circular DNA genome. The early (E) and late (L) genes, as well as the
LCR, are shown. The major early promoter (P97) is indicated by an arrow. Transcription occurs from one strand only and is in clockwise orientation
in this representation. See the text for details. (B) Schematic structure of the minimal HPV-16 genome fragment (red) retained after integration
into a host chromosome (blue). The HPV E6/E7 genes are consistently expressed, whereas the remaining HPV genes are often deleted or not
transcribed after integration. Two major HPV RNA species are produced. One transcript has the potential to encode full-length E6 and E7
proteins, and another set of transcripts encodes spliced E6 proteins (designated E6*) and the full-length E7 protein. Most HPV transcripts in
cervical cancer cells are spliced downstream of the E7 gene and use cellular splicing and polyadenylation signals. This may cause increased stability
of HPV transcripts. See the text for details.
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that high-risk HPVs have evolved to thwart these challenges
directly contribute to their oncogenic potential.

HPV GENE EXPRESSION IN CERVICAL CANCERS

One of the key events of HPV-induced carcinogenesis is the
integration of the HPV genome into a host chromosome. HPV
genome integration often occurs near common fragile sites of
the human genome (131), but there are no apparent hot spots
for integration and no evidence for insertional mutagenesis
(146). Integration follows a more specific pattern with respect
to the HPV genome. Expression of the viral E6 and E7 genes
is consistently maintained, whereas other portions of the viral
DNA are deleted or their expression is disturbed (6) (Fig. 1B).
Loss of expression of the HPV E2 transcriptional repressor is
significant, as it may result in deregulated HPV E6 and E7
expression. There is also evidence for increased HPV-16 E6/E7
mRNA stability after integration (71), and specific alterations
of host cellular gene expression have been detected upon HPV
genome integration (1). Cells that express E6/E7 from inte-
grated HPV sequences have a selective growth advantage over
cells with episomal HPV genomes (70). The concept that loss
of E2 repressor function may be critical for malignant progres-
sion is supported by experiments showing that reexpression of
E2 in cervical cancer cell lines causes growth suppression
(126). These experiments clearly demonstrate that continued
E6/E7 expression in cervical cancers is necessary for the main-
tenance of the transformed phenotype (55, 140).

Integration of the viral genome into a host cell chromosome
also leads to loss of E5 expression. In papillomaviruses that
cause fibropapillomas, such as bovine papillomavirus type 1,
the E5 open reading frame encodes the major transforming
viral protein. E5 associates with intracellular membranes and
transforms cells by activating receptor tyrosine kinases such as
platelet-derived growth factor receptor � through a ligand-
independent mechanism (reviewed in reference 29). HPV E5
proteins may have similar activities (87), and disruption of E5
expression affects the life cycle of high-risk HPVs (46, 50). The
fact that E5 expression is not generally detected in cervical
cancers after viral genome integration demonstrates that E5 is
not necessary for the maintenance of the transformed phenotype.

BIOLOGICAL ACTIVITIES OF HPV ONCOPROTEINS

The oncogenic activities of high-risk HPV E6 and E7 genes
in tissue culture and transgenic mouse model systems have
been documented extensively. Expression of high-risk HPV E6
and E7 genes in primary human keratinocytes effectively facil-
itates their immortalization (59, 96). When grown under con-
ditions that allow stratification and the formation of skin like
structures, high-risk HPV E6/E7 immortalized cells display
histomorphological hallmarks of high-grade squamous intra-
epithelial lesions, well-established precursors of cervical can-
cers (91). At low passage numbers, however, high-risk HPV
immortalized cells are nontumorigenic. They can undergo ma-
lignant progression after extended growth in tissue culture or
when additional oncogenes such as ras or fos are expressed (37,
107). The development of cervical cancers in a transgenic
mouse model in which HPV-16 E6/E7 is expressed in basal

epithelial cells is dependent on long-term exposure to low
doses of estrogen (4).

Similarly, progression of high-risk HPV-positive cervical le-
sions is often a slow process that occurs at a low frequency and
requires the acquisition of host cellular mutations (reviewed in
reference 150). The rate of spontaneous mutagenesis in normal
human cells is exceedingly low, but the expression of high-risk
HPV E6/E7 proteins dramatically augments genomic instability
(142). Therefore, expression of the high-risk HPV E6/E7 genes
not only is necessary for the induction of premalignant alterations
but also directly contributes to malignant progression by subvert-
ing genomic stability (reviewed in reference 35).

CELLULAR TARGETS OF THE HIGH-RISK HPV E6 AND
E7 ONCOPROTEINS

A small set of cellular signal transduction pathways are con-
sistently rendered dysfunctional in the majority of human solid
tumors (reviewed in reference 58). Efforts to enumerate the
molecular abnormalities in human tumors have more recently
been complemented by studies designed to define the mini-
mally necessary series of oncogenic steps necessary to generate
fully transformed human epithelial cell lines in vitro. Such
experiments have revealed that expression of simian virus 40
(SV40) large tumor antigen (T), SV40 small tumor antigen (t),
the catalytic subunit of human telomerase (hTERT), and the
H-ras oncogene is minimally required to fully transform pri-
mary human epithelial cells (reviewed in reference 57). SV40 T
functionally inactivates the p53 and retinoblastoma (pRB) tu-
mor suppressors, whereas SV40 t interacts with and inhibits
protein phosphatase 2A. The HPV E6 and E7 oncoproteins
share functional similarities with SV40 T and inactivate the p53
and pRB tumor suppressors, respectively. In addition, HPV E6
can activate hTERT transcription. Hence, the expression of
high-risk HPV E6/E7 oncogenes provides a subset of the min-
imally required carcinogenic hits for full transformation of
primary human epithelial cells.

INDUCTION OF ABERRANT PROLIFERATION BY
HIGH-RISK HPV-16 E7 ONCOPROTEINS

HPV E7 proteins are low-molecular-weight proteins of ap-
proximately 100 amino acids that have no known intrinsic
enzymatic activities. Like other oncoproteins encoded by small
DNA tumor viruses, they associate with and modify the func-
tions of cellular protein complexes. The amino-terminal do-
main of HPV E7 has sequence similarity to a small portion of
conserved region 1 (CR1) and to CR2 of adenovirus E1A (Fig.
2A). These sequences are also conserved with SV40 T. The
HPV E7 carboxyl terminus contains two copies of a CXXC
motif that are separated by a 29-amino-acid spacer. This do-
main has been implicated in metal binding (8) and may func-
tion as a dimerization domain (24, 93). Like adenovirus (Ad)
E1A and SV40 T antigen, the HPV E7 proteins interact with
the retinoblastoma tumor suppressor protein pRB and the
related “pocket proteins” p107 and p130 through a conserved
LXCXE sequence within CR2 sequences (39, 40) (Fig. 2A).
The pocket proteins regulate the activities of the E2F family of
transcription factors that control multiple cell cycle transitions
as well as other cellular activities (reviewed in reference 17).
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The ability of HPV E7, Ad E1A, and SV40 T antigen to
associate with pRB is critical for their capacity to generate
and/or maintain a host cellular milieu that is conducive to viral
genome replication. Consistent with this model, mutation of
the LXCXE domain in E7 impedes the HPV life cycle (47,
127). High-risk HPV-derived E7 proteins interact with pRB
more efficiently than E7 proteins encoded by low-risk mucosal
HPVs (49, 97), and mutations in the LXCXE domain that
affect pocket protein association are transformation defective
in different assay systems (reviewed in reference 95). High-risk
HPV E7 proteins have the unique ability to destabilize the
pocket proteins through a proteasome-dependent mechanism
(10, 14, 73). In addition to the LXCXE domain, sequences
within the amino-terminal CR1 homology domain of high-risk
HPV E7 are necessary for the ability to destabilize pocket
proteins. High-risk HPV E7 proteins with mutations in the
CR1 homology domain are also transformation deficient.
Hence, the ability of high-risk E7 proteins to destabilize pocket
proteins is critical for cellular transformation (54, 61, 73) (Fig.
2A). In addition to pRB binding and degradation, E7 has other
cellular targets that are relevant to cellular transformation.
HPV E7 can override the growth-inhibitory activities of cyclin-
dependent kinase inhibitors, including p21CIP1 (48, 72) and
p27KIP1 (145). Since these proteins are critical regulators of
cell cycle arrest during keratinocyte differentiation (94), their
inhibition by E7 may also contribute to the maintenance of a

replication-competent cellular milieu in differentiated host ep-
ithelial cells (20). A carboxyl-terminal E7 domain that does not
contribute to pRB binding and/or degradation is necessary for
the ability of E7 to override p21CIP1-mediated growth arrest
(60). Additional E7-interacting proteins, including transcrip-
tion factors, cell cycle regulators, and metabolic enzymes, have
been isolated by various methods, and many of these candi-
dates appear to associate with carboxyl-terminal E7 sequences
(reviewed in reference 95). The biological relevance of many of
these interactions, however, remains to be determined. The
carboxyl-terminal HPV E7 domain contributes to association
with chromatin-modifying enzymes, particularly histone
deacetylases and histone acetyl transferases (15). E7 has also
been reported to interact with the transcriptional coactivators
p300, CBP, and pCAF (5, 12, 64). Similar to the case for the
amino-terminal pRB binding site, the integrity of the carboxyl-
terminal E7 sequences that have been implicated in histone
deacetylase binding are necessary for the viral life cycle (88).
Hence, these interactions may contribute to transforming ac-
tivities of high-risk HPV E7 proteins (Fig. 2A).

ELIMINATION OF TROPHIC SENTINEL SIGNALING BY
HIGH-RISK HPV E6 ONCOPROTEINS

The HPV E6 proteins are small proteins of approximately
150 amino acids and contain two domains consisting of paired

FIG. 2. (A) Schematic representation of the HPV-16 E7 oncoprotein. The amino-terminal 37 amino acid residues have sequence similarity to
a portion of CR1 (green) and to CR2 (red) of Ad E1A. Identical and chemically similar amino acid residues between HPV-16 E7 and Ad5 E1A
are highlighted by red and blue boxes, respectively. CR1 sequences are necessary for cellular transformation and pRB degradation but do not
directly contribute to pRB binding. Sequences in CR2 include the core pRB binding site (LXCXE), which is necessary for cellular transformation,
as well as a casein kinase II consensus phosphorylation site (CKII). The E7 carboxyl terminus (blue) contains a metal binding motif and mediates
association with multiple host cellular proteins, including histone-modifying enzymes, which may also contribute to cellular transformation. See the
text for details and references. (B) Schematic representation of the HPV-16 E6 oncoprotein. The sequence contains two metal binding motifs that
are related to the E7 carboxyl terminus (blue). The E6 carboxyl terminus contains a PDZ protein-binding motif (yellow) that is similar to the
carboxyl-terminal PDZ binding motif of Ad9 E4 ORF1. Many HPV-16 E6 binding proteins, including E6-AP, paxillin, E6-BP, and IRF-3, contain
a conserved �-helical domain and presumably interact with similar E6 sequences. The isoleucine residue at position 128 importantly contributes
to interaction with �-helix domains containing E6 binding proteins. Identical and chemically similar amino acid residues are highlighted by red and
blue boxes, respectively. See the text for details and references.
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CXXC motifs that are each related to the E7 carboxyl terminus
(25). Induction of aberrant cellular and/or viral DNA synthesis
in differentiated keratinocytes that presumably lack environ-
mental mitogen stimulation results in conflicting growth sig-
nals. This situation triggers a cellular defense mechanism, the
“trophic sentinel response” that eliminates such deviant cells
from the proliferative pool through cell type-specific abortive
processes, including cell death, differentiation, and senescence
(reviewed in reference 43) (Fig. 3). This was originally discov-
ered in transgenic mouse models in which E7 expression
caused aberrant proliferation and differentiation, which re-
sulted in cell death (63, 101, 102). Similar to what has been
reported for adenovirus E1A (113) and c-myc (44), HPV-16
E7-expressing cells are predisposed to cell death when their
culture medium is deprived of growth factors (41, 74). This
process is p53 dependent, even though many p53-responsive
apoptosis regulators are not induced, and cell death appears to
be at least in part caspase independent (41, 76).

High-risk HPV E6 proteins eliminate the trophic sentinel
response triggered by E7 expression (74) through inactivation
of p53. This process is essential for the life cycle of high-risk
HPVs (103). High-risk HPV proteins E6 do not directly asso-
ciate with p53 but form a complex with the cellular E6-AP
protein, which is essential for p53 interaction (66). E6-AP is
the founding member of the homology to E6 C terminus
(HECT) family of E3 ubiquitin ligases (65). E6-AP does not
interact with p53 in the absence of E6, and its normal sub-
strates are unknown (9, 124). High-risk E6 proteins retarget
E6-AP to induce ubiquitination and rapid proteasomal degra-
dation of p53 (119). HPV-16 E6 proteins may also interact with
additional cellular factors that are important for the transcrip-

tional activity of p53, including p300 (105, 147) and the tran-
scriptional coactivator ADA3 (84).

High-risk HPV E6 proteins also have p53-independent trans-
forming activities. These HPV E6 proteins contain a carboxyl-
terminal PDZ binding domain (80, 86) (Fig. 2B). PDZ domain
proteins act as molecular organizing centers for many cellular
signal transduction pathways (reviewed in reference 136). The
ability of adenovirus type 9 to induce mammary tumors in rats
is linked to the E4 ORF1 protein (68, 69) and its capacity to
form complexes with PDZ proteins (86). The high-risk HPV
E6 proteins have a marked specificity for particular PDZ do-
mains (129), but the biologically relevant PDZ targets for E6
remain to be determined. The ability of high-risk HPV E6
proteins to associate with PDZ host proteins is relevant to
cellular transformation. This relevance has been best illus-
trated in a transgenic mouse model in which the ability of
HPV-16 E6 to induce skin hyperplasias (85) is dependent on
the integrity of the carboxyl-terminal PDZ binding domain
(98).

A considerable number of additional cellular proteins have
been reported to associate with E6. These include the EF-hand
calcium-binding protein E6-BP (reticulocalbin 2) (19), the in-
terferon regulatory factor IRF-3 (115), and the focal adhesion
protein paxillin (132, 135). Hyperactivity of focal adhesion
kinase (FAK) has been detected in cervical cancer and HPV
immortalized epithelial cell lines, but the mechanism is unclear
(92). Because these and other potential E6 cellular target pro-
teins share a conserved �-helical interaction site for E6 asso-
ciation (18, 42, 133, 135) (Fig. 2B), it has been difficult to
determine the relevance of these individual interactions to the
biological activities of high-risk HPV E6 proteins.

INDUCTION OF TELOMERASE ACTIVITY BY
HIGH-RISK HPV E6 PROTEINS

Each round of DNA replication leads to erosion of the
chromosomal telomeric termini. Telomere shortening repre-
sents a cell-autonomous mechanism that restricts the prolifer-
ative capacity of normal somatic cells. Certain cell types that
must undergo a large number of cell divisions, such as stem
cells, express telomerase, a ribonucleoprotein that prevents
telomere erosion. Ectopic expression of the catalytic telomer-
ase subunit, hTERT, in primary human cells causes life span
extension and facilitates immortalization. The majority of hu-
man tumor cells are telomerase positive, suggesting that aber-
rant telomerase activity may be critical for human tumorigen-
esis. Ectopic hTERT expression also represents one of the
obligatory components for the generation of human tumor-like
cells in vitro (reviewed in reference 13). In combination with
E7, high-risk HPV E6 proteins contribute to immortalization
of primary human epithelial cells through the induction of
telomerase activity (79, 83). High-risk E6 proteins induce
hTERT expression at a transcriptional level (137). The mini-
mal E6 responsive hTERT promoter fragment contains c-myc-
responsive E-boxes that contribute to E6-mediated transcrip-
tional activation, but E6 does not markedly affect c-myc
expression or the composition of myc transcription factor com-
plexes (51, 99, 138). There is evidence, however, that E6 di-

FIG. 3. Schematic outline of critical steps of high-risk HPV-in-
duced carcinogenesis. Inactivation of the pRB and p53 tumor suppres-
sor pathways and expression of the catalytic telomerase subunit
hTERT constitute a subset of the steps that have been shown to be
necessary for the generation of fully transformed human epithelial
cells in vitro. See the text for details.
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rectly interacts with c-myc and that a c-myc/E6 complex acti-
vates hTERT expression (138).

HPV ONCOPROTEINS AND GENOMIC INSTABILITY

As outlined in the previous sections, the continued com-
bined expression of high-risk HPV E6 and E7 proteins in
cervical cancers causes inactivation of the pRB and p53 tumor
suppressor pathways and induces telomerase activity. These
signal transduction pathways are disrupted in the majority of
human solid tumors (reviewed in reference 58), but they con-
stitute only a subset of the oncogenic hits that are minimally
required to generate fully transformed human cells in vitro
(reviewed in reference 57). Clearly, additional oncogenic
events are necessary in E6/E7 expressing cells to yield full
transformation in vivo and in vitro. Consistent with this notion,
cervical carcinomas contain chromosomal abnormalities (re-
viewed in reference 149). Specific gains of chromosome 3q

occur at the transition from high-risk-HPV-associated severe
dysplasia to invasive carcinoma (56, 62).

Human carcinogenesis has been characterized as a disease
of genomic instability (81), and the majority of human solid
tumors display evidence of chromosomal aberrations, most
notably aneuploidy. Fully transformed human cells generated
in vitro retain stability of their genomes (148). Genomic insta-
bility therefore does not necessarily arise as a generic mani-
festation of oncogenic transformation but rather represents a
characteristic of tumor cells that enables them to acquire ge-
netic alterations that are necessary for survival and clonal ex-
pansion within the rapidly changing microenvironment of an
emerging neoplasm (reviewed in reference 16). Hallmarks of
genomic instability have even been noted in early premalignant
high-risk-HPV-associated lesions. In particular, the presence
of tripolar mitotic figures has served as a hallmark to distin-
guish high-risk-HPV-positive lesions (143).

High-risk HPV E6 and E7 oncoproteins can each indepen-

FIG. 4. The HPV-16 E7 oncoprotein contributes to induction of genomic instability by induction of centrosome duplication errors. Shown are
examples of different mitotic abnormalities that can be generated by numerical centrosome abnormalities. (A) Normal bipolar metaphase; each mitotic
spindle pole body consists of a single centrosome which contains two centrioles. Individual centrioles are visualized by green fluorescent protein
(GFP)-centrin fluorescence. (B) Abnormal bipolar mitosis due to centrosome aggregation. Individual centrioles are visualized by GFP-centrin fluores-
cence. The mitotic spindle pole on the left contains three centrioles, whereas the one on right contains four centrioles that may represent two aggregated
centrosomes. There is a chance for nonsymmetrical chromosome segregation upon completion of cell division. (C) Abnormal bipolar mitosis in the
presence of multiple individual centrosomes. Individual centrioles are visualized by immunofluorescence by using a centrin-specific antibody. While the
majority of the chromosomes are segregated in a bipolar fashion, the centrosomes on the left may interfere with symmetrical chromosome distribution
by apparently capturing some chromosomal material. (D) Predominantly monopolar mitosis in the presence of multiple centrosomes. Individual
centrosomes are visualized by immunofluorescence by using a �-tubulin-specific antibody. (E) Tripolar mitotic figures are hallmarks of high-risk
HPV-associated cervical lesions. Individual centrosomes are visualized by GFP–�-tubulin fluorescence.
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dently induce genomic instability in normal human cells (142).
They cooperate to generate mitotic defects and aneuploidy
through the induction of centrosome abnormalities (Fig. 4) in
normal human epithelial cells, and the characteristic multipo-
lar mitoses in cervical lesions are caused by centrosome abnor-
malities (33). In contrast, low-risk HPV E6/E7 proteins are not
capable of inducing centrosome abnormalities. Centrosome
abnormalities and associated mitotic defects are apparent in
cells that, similar to low-grade HPV-associated lesions, express
episomal HPV-16 at a low copy number (32), and their inci-
dence increases in cells with integrated HPV (108). Centro-
some abnormalities have also been detected in cervical (7, 114)
and skin lesions that arise in HPV-16 E6- and/or E7-expressing
transgenic mice (118).

In many tumors, centrosome abnormalities emerge as a con-
sequence of cytokinesis and/or cell division defects, thus oc-
curring mostly in cells that have also accumulated nuclear
abnormalities (reviewed in reference 122). In stark contrast,
however, HPV E7 expression induces primary centrosome and
centriole duplication errors in normal diploid cells (31). The
detailed molecular mechanisms of this activity of E7 remain to
be determined. This activity is at least in part independent of
the ability to target pRB family members, since the expression
of HPV-16 E7 causes an increased incidence of centrosome
abnormalities in mouse embryo fibroblasts that lack pRB,
p107, and p130 expression (34). Thus, HPV-16 E7 may act as
a mitotic mutator which by increasing the likelihood of mitotic
errors during each round of cell division provides the necessary
genomic plasticity for the acquisition of additional cellular
mutations that contribute to malignant progression (reviewed
in reference 35). HPV oncoprotein-expressing cells also exhibit
centrosome-independent manifestations of genomic instability.
These manifestations include anaphase bridges that may be
caused by double-strand DNA breaks as well as lagging chro-
mosomal material (36). HPV-16 expressing cells have a higher
propensity for integration of plasmid DNA (77). The observed
incidence of double-strand DNA breaks in HPV-16 E6/E7-
expressing cells may provide for a mechanistic rationalization
of this observation and may facilitate HPV genome integration
that often accompanies malignant progression. In addition,
high-risk HPV E6 and E7 proteins eliminate multiple mitotic
checkpoints and/or the tetraploidy checkpoint that normally
blocks tetraploid cells from reentering the cell division cycle
(128, 130). Genomic analyses have offered additional evidence
for the dysregulation of mitotic pathways in cervical cancer and
high-risk-HPV-expressing cell lines (106, 125).

CONCLUDING REMARKS

The transforming activities of high-risk HPVs represent a
consequence of a viral replication strategy that is driven by the
necessity to replicate viral genomes in suprabasal, normally
growth-arrested differentiated epithelial cells and to establish
long-term maintenance in a tissue in which individual cells are
rapidly turned over and shed. Carcinogenic progression of
high-risk-HPV-infected cells is an abortive, terminal event,
since most cancer cells contain integrated HPV genomes and
do produce viral progeny. If the integration of high-risk HPV
genomes indeed represents a consequence of HPV E6/E7-
induced genomic instability, it appears that such a replication

strategy might put high-risk HPVs at an evolutionary disad-
vantage compared to the low-risk HPVs that infect the ano-
genital tract mucosa. Low-risk HPVs effectively induce epithe-
lial hyperplasia and produce copious amounts of progeny virus.
Low-risk HPV E6 and E7 proteins critically contribute to viral
life cycle (100), but they have a substantially lower transform-
ing activity and do not induce genomic instability. Low-risk
HPV E7 proteins bind to pRB at a decreased efficiency (49, 97)
and do not induce pRB destabilization (54). Low-risk HPV E6
proteins do not efficiently interact with p53 (141) and are
incompetent for p53 degradation (120). They lack carboxyl-
terminal PDZ binding domains (80, 86) and do not induce
telomerase activity (83). Consequently, it is tempting to spec-
ulate that life cycles of mucosal high-risk and low-risk HPVs
differ fundamentally. High-risk HPVs can frequently persist in
an infected host cell at a low copy number for decades, often
without causing clinically overt lesions. This is remarkable
given that squamous epithelial cells are turned over very rap-
idly. A relatively small number of basal epithelial cells have
characteristics of stem cells and constantly produce differenti-
ation-competent squamous epithelial cells to maintain the in-
tegrity of the epithelium throughout the life of the organism
(reviewed in reference 2). One might envision a scenario in
which high-risk HPVs have evolved to be able to maintain their
infected host cell in a stem cell-like state in order to establish
a persistent infection. The high-risk HPV-specific biological
activities of E6 and E7 may reflect this strategy. Low-risk
HPVs may have evolved a life cycle that is optimized to rapidly
produce copious amounts of progeny virus and readily form
large productive lesions to maximize transmission of the virus
to a new host. Such a model may predict that different HPVs
may infect distinct target cells and that there may be differ-
ences in the persistence of viral genomes in infected host cells.
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